
PHP Cookies

PHP Cookies

 A cookie is often used to identify a user. A cookie is a small file that the server embeds on
the user's computer. Each time the same computer requests a page with a browser, it will
send the cookie too. With PHP, you can both create and retrieve cookie values.

Create Cookies With PHP

A cookie is created with the setcookie() function.

Syntax - setcookie(name, value, expire, path, domain, secure, httponly);

Only the name parameter is required. All other parameters are optional.

PHP Create/ Retrieve a Cookie

 The following example creates a cookie named
"user" with the value "John Doe". The cookie will
expire after 30 days (86400 * 30). The "/" means
that the cookie is available in entire website
(otherwise, select the directory you prefer).

 We then retrieve the value of the cookie "user"
(using the global variable $_COOKIE). We also
use the isset() function to find out if the cookie is
set:

 Note: The setcookie() function must appear
BEFORE the <html> tag.

 Note: The value of the cookie is automatically
URLencoded when sending the cookie, and
automatically decoded when received (to
prevent URLencoding, use setrawcookie()
instead).

<?php
$cookie_name = "user";
$cookie_value = "John Doe";
setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/");
// 86400 = 1 day
?>
<html>
<body>

<?php
if(!isset($_COOKIE[$cookie_name])) {

echo "Cookie named '" . $cookie_name . "' is not set!";
} else {

echo "Cookie '" . $cookie_name . "' is set!
";
echo "Value is: " . $_COOKIE[$cookie_name];

}
?>

</body>
</html>

Modify a Cookie Value & Delete a Cookie

To modify a cookie, just set (again) the cookie using the setcookie() function:

<?php
$cookie_name = "user";
$cookie_value = "Alex Porter";
setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/");
?>
<html>
<body>

<?php
if(!isset($_COOKIE[$cookie_name])) {

echo "Cookie named '" . $cookie_name . "' is not set!";
} else {

echo "Cookie '" . $cookie_name . "' is set!
";
echo "Value is: " . $_COOKIE[$cookie_name];

}
?>

</body>
</html>

To delete a cookie, use the setcookie()
function with an expiration date in the past:

<?php
// set the expiration date to one hour ago
setcookie("user", "", time() - 3600);
?>
<html>
<body>

<?php
echo "Cookie 'user' is deleted.";
?>

</body>
</html>

Check if Cookies are Enabled

The following example creates a small script that checks whether cookies are enabled. First, try to
create a test cookie with the setcookie() function, then count the $_COOKIE array variable:

<?php
setcookie("test_cookie", "test", time() + 3600, '/');
?>
<html>
<body>

<?php
if(count($_COOKIE) > 0) {

echo "Cookies are enabled.";
} else {

echo "Cookies are disabled.";
}
?>

</body>
</html>

PHP Sessions

PHP Sessions

An alternative way to make data accessible across the various pages of an entire website is to use a PHP
Session.

Unlike a cookie, the information is not stored on the users computer.

A session creates a file in a temporary directory on the server where registered session variables and their
values are stored. This data will be available to all pages on the site during that visit.

The location of the temporary file is determined by a setting in the php.ini file called session.save_path.
Before using any session variable make sure you have setup this path.

PHP Sessions

When a session is started following things happen −

 PHP first creates a unique identifier for that particular session which is a random string of 32
hexadecimal numbers such as 3c7foj34c3jj973hjkop2fc937e3443.

 A cookie called PHPSESSID is automatically sent to the user's computer to store unique session
identification string.

 A file is automatically created on the server in the designated temporary directory and bears the
name of the unique identifier prefixed by sess_ ie sess_3c7foj34c3jj973hjkop2fc937e3443.

When a PHP script wants to retrieve the value from a session variable, PHP automatically gets the unique
session identifier string from the PHPSESSID cookie and then looks in its temporary directory for the file
bearing that name and a validation can be done by comparing both values.

A session ends when the user loses the browser or after leaving the site, the server will terminate the
session after a predetermined period of time, commonly 30 minutes duration.

Starting a PHP Session

 A PHP session is easily started by making a call to the session_start() function. This function first
checks if a session is already started and if none is started then it starts one. It is recommended to
put the call to session_start() at the beginning of the page.

 Session variables are stored in associative array called $_SESSION[]. These variables can be
accessed during lifetime of a session.

 The following example starts a session then register a variable called counter that is incremented
each time the page is visited during the session.

 Make use of isset() function to check if session variable is already set or not.

 Put this code in a test.php file and load this file many times to see the result −

<?php
session_start();

if(isset($_SESSION['counter'])) {
$_SESSION['counter'] += 1;

}else {
$_SESSION['counter'] = 1;

}

$msg = "You have visited this page ". $_SESSION['counter'];
$msg .= "in this session.";

?>

<html>

<head>
<title>Setting up a PHP session</title>

</head>

<body>
<?php echo ($msg); ?>

</body>

</html>
It will produce the following result −

You have visited this page 1in this session.

Turning on Auto Session

You don't need to call start_session() function to start a session when a user visits your site
if you can set session.auto_start variable to 1 in php.ini file.

Sessions without cookies
There may be a case when a user does not allow to store cookies on their machine. So
there is another method to send session ID to the browser.

Alternatively, you can use the constant SID which is defined if the session started. If the client did
not send an appropriate session cookie, it has the form session_name=session_id. Otherwise, it
expands to an empty string. Thus, you can embed it unconditionally into URLs.

The following example demonstrates how to register a variable, and how to link correctly to
another page using SID.

Destroying a PHP Session

 A PHP session can be destroyed by session_destroy() function. This function does not need any
argument and a single call can destroy all the session variables. If you want to destroy a single
session variable then you can use unset() function to unset a session variable.

 Here is the example to unset a single variable −

<?php

unset($_SESSION['counter']);

?>

Here is the call which will destroy all the session variables −

<?php

session_destroy();

?>

Vidyashankara

